向量三点共线公式怎么证明
来源 :华课网校 2024-07-29 16:00:21
中向量三点共线公式是指,如果三个点A、B、C在同一条直线上,那么向量AB和向量AC的线性组合等于向量BC,即:
向量AB = k * 向量AC + 向量BC
其中,k是一个实数。
那么,如何证明向量AB、AC和BC三个向量共线呢?
我们可以使用向量的坐标表示法来进行证明。
假设点A的坐标为(a1, a2, a3),点B的坐标为(b1, b2, b3),点C的坐标为(c1, c2, c3)。
则向量AB的坐标表示为(b1-a1, b2-a2, b3-a3);向量AC的坐标表示为(c1-a1, c2-a2, c3-a3);向量BC的坐标表示为(c1-b1, c2-b2, c3-b3)。
我们将向量AB、AC和BC的坐标分别代入向量三点共线公式中,得到:
(b1-a1, b2-a2, b3-a3) = k * (c1-a1, c2-a2, c3-a3) + (c1-b1, c2-b2, c3-b3)
化简后得到:
(b1-a1) = k * (c1-a1) + (c1-b1)
(b2-a2) = k * (c2-a2) + (c2-b2)
(b3-a3) = k * (c3-a3) + (c3-b3)
我们将方程组写成矩阵形式,得到:
| b1-a1 | | c1-a1 c1-b1 | | k |
| b2-a2 | = | c2-a2 c2-b2 | * | 1 |
| b3-a3 | | c3-a3 c3-b3 | | |
使用矩阵的逆矩阵求解k,即可证明向量AB、AC和BC三个向量共线。
如果逆矩阵存在,则方程有唯一解,即三个向量共线;如果逆矩阵不存在,则说明三个点不共线。
以上是向量三点共线公式的证明方法,希望对您有所帮助。
您可能感兴趣的文章
相关推荐
热门阅读
-
紫罗兰翡翠手串介绍
2024-07-29
-
福克斯正时皮带怎么对
2024-07-29
-
秋天的比喻句有哪些初一简单一点
2024-07-29
-
cad图层设置标准大全
2024-07-29
-
学开摩托车的方法和技巧图片
2024-07-29
-
关于小燕子简单的介绍
2024-07-29
-
三行情书怎么写好
2024-07-29
-
西南交大是不是双一流建设高校
2024-07-29
-
新桑塔纳与捷达哪个值得买
2024-07-29
-
情人节的日期是多少号
2024-07-29
-
三行情书怎么写好
2024-07-29
-
西南交大是不是双一流建设高校
2024-07-29
-
新桑塔纳与捷达哪个值得买
2024-07-29
-
情人节的日期是多少号
2024-07-29
最新文章
-
夜空中最亮的星插曲为何是你原唱
2024-07-29
-
gucci bloom100ml香水
2024-07-29
-
怎样提高智商锻炼思维
2024-07-29
-
珍惜粮食古诗词搜集
2024-07-29
-
qq如何关闭手机通讯录功能
2024-07-29
-
古代有还珠格格这个人吗视频
2024-07-29
-
汽车内部位的名称和图解大全
2024-07-29
-
江玉燕生了孩子吗
2024-07-29
-
显卡如何查看生产日期
2024-07-29
-
187b倒车影像不可用
2024-07-29
-
关于泸州老窖的产地介绍怎么写
2024-07-29
-
怎么祝别人结婚纪念日
2024-07-29
-
在那遥远的地方每集简介
2024-07-29
-
周六装修噪音扰民怎么举报电话
2024-07-29